Prime Numbers - the Search and the Discovery

The main mathematical news

1976: The use of prime numbers in cryptography.

2008: The discovery of the first prime number with more than 10 million digits.

2018: The discovery of the 51-th Mersenne prime with more than 24 million digits.

To the MNS presentation
Additional Theorems / conjectures / Open questions

*  There are infinitely many prime numbers.

*  Mersenne’s (refuted) conjecture: 2^p-1 is prime for p=2,3,5,7,13,17,19,31,67,127,257

*  Is the set of Mersenne primes infinite?

*  Many Mersenne numbers are composite.

*  Many primes aren’t Mersenne numbers.

The number M of the form M=n^2-n+41 is prime, for any natural numbers n between 1 and 40.

*   Is there a “formula” that generates all and only prime numbers???

*   Perfect numbers and their relation to Mersenne Primes.

$latex x^2 + \int_0^1 f(x) \, \ud x $

$latex \mathbb{Z} \subseteq \mathbb{R} $


[latex] x^2 + \int_0^1 f(x) dx [/latex]
$latex \mathbb{Z} \subseteq \mathbb{R} $

To the MNS presentation
The main mathematical concepts / Principles

Number theory (MSC2010#97F60) 

*    Prime/Composite (natural) number

*    Mersenne prime

*    perfect numbers

Logic (MSC2010#97E30) 

*    Proof by contradiction

Real life mathematics (MSC2010#97F90) 

*    Cryptography

To the MNS presentation

To start the presentation click anywhere in the 1st slide.
To move to the next slide use the keyboard arrows